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The UB matrix approach has been extended to handle inelastic neutron

scattering experiments with differing ki and kf . We have considered the typical

goniometer employed on triple-axis and time-of-flight spectrometers. Expres-

sions are derived to allow for calculation of the UB matrix and for converting

from observables to Q-energy space. In addition, we have developed

appropriate modes for calculation of angles for a specified Q-energy position.

1. Introduction

Inelastic neutron scattering provides a very powerful tool for

investigation of both magnetic and structural excitations in

condensed matter systems. Although the field is rather mature,

with the first instruments developed in the 1950s, handling of

single crystals is in a rather primitive state. There are two

standard instruments for investigations using this technique.

First, the triple-axis spectrometer is the standard instrument

used at rector-based neutron sources and consists of mono-

chromator crystals before and after the sample, allowing one

to study excitations with a specific wavevector and energy

transfer. The standard method for handling crystals on such an

instrument is to define a pair of orthogonal reciprocal-space

vectors within a scattering plane and work within the space

defined by these vectors. The second type of instrument, most

often used at pulsed spallation neutron sources, uses

measurement of the neutron time-of-flight with either a fixed

incident or final wavevector to measure the neutron energy

transfer. Such an instrument often employs very large detector

banks to maximize the solid-angle coverage. Measurement

with single crystals using these time-of-flight instruments is at

a fairly early stage and very little software has been developed

to assist in performing or analyzing such experiments. We have

extended the UB matrix formalism (Busing & Levy, 1967) to

handle such inelastic neutron scattering experiments and have

performed calculations for the typical goniometers employed

on such instruments. This paper will be split into two parts, the

first dealing with the triple-axis spectrometer and the second

with time-of-flight spectrometers.

2. Triple-axis spectrometer

The triple-axis spectrometer (TAS) was invented in the 1950s

by Bertran Brockhouse (Brockhouse & Stewart, 1955) and

remains the principal tool for studying inelastic neutron

scattering at reactor-based continuous neutron sources. This

instrument uses Bragg scattering from a monochromator and

analyzer crystal to study scattering at a specified ki and kf .

Many of the early measurements were performed on high-

symmetry single crystals and most of the data acquisition

software worked under this assumption. Consequently, the

typical way of defining an orientation for a single crystal on

such an instrument would be to specify two orthogonal vectors

within the scattering plane and to work in the coordinate

space of these vectors. Such a procedure works well provided

that the crystal symmetry is sufficiently high. However,

measurements on lower-symmetry samples are becoming

much more prevalent and a more flexible approach is clearly

needed. In addition, despite the presence of a goniometer that

allows some movement away from the scattering plane, the

data acquisition schemes employed to date usually do not

allow for such motions.

Clearly, the best approach to overcome these limitations is

the standard UB matrix approach (Busing & Levy, 1967). To

apply the UB matrix formalism to the TAS, the expressions

need to be generalized to handle the inelastic scattering case

where the incident and final wavevectors differ. In addition,

we need to consider a different goniometer for the TAS as

most of these instruments have sample manipulation which is

provided by a series of three rotations, as shown in Fig. 1.

These rotations consist of a single rotation about the instru-

ment z axis, and a pair of arcs (lower and upper, angles � and

�, respectively) with rather limited angular range (typically

�25�). Following Busing & Levy (1967), the z-axis rotation is

broken down into the angles ! and �. The upper arc, �, is

defined to be a rotation about the x axis, while the lower arc,

�, is defined to be a rotation about the y axis. For all rotations,

we use the standard trigonometric definition, positive rota-

tions are counterclockwise, resulting in the following rotation

matrices:

N ¼

1 0 0

0 cos � � sin �
0 sin � cos �

0@ 1A; ð1Þ



M ¼

 
cos� 0 sin�

0 1 0

� sin� 0 cos�

!
; ð2Þ

X ¼

 
cos! � sin! 0

sin! cos! 0

0 0 1

!
; ð3Þ

H ¼

 
cos � � sin � 0

sin � cos � 0

0 0 1

!
: ð4Þ

It is worth pointing out several differences between the

inelastic and diffraction cases. First, the scattering angle has

been designated by ’ as opposed to 2�. The reason for this

designation, as will become clear below, is that the � angle for

the general inelastic case will not be half of the scattering

angle. In addition, we will write the momentum transfer

Q ¼ ki � kf ð5Þ

as opposed to Q ¼ kf � ki used by Busing & Levy (1967). This

definition is adopted for consistency with the standard defi-

nition of energy transfer where neutron energy loss is positive,

i.e. �E ¼ Ei � Ef .

Like Busing & Levy (1967), we begin with a certain wave-

vector,

Q ¼

h

k

l

0@ 1A: ð6Þ

The B matrix transforms Q into the orthogonal crystal coor-

dinate system (Qc), which is then transformed by the U matrix

into the coordinate system attached to the upper axis of the

instrument where the crystal is mounted and thus remains

stationary; in this case the � coordinate system (Q�). The goal

of the calculation is to observe this wavevector in the detector

with a specified ki and kf . Using Fig. 2, we will begin by writing

out the expression for Q in the laboratory coordinate system,

QL, as

QL ¼ HXMNUBQ; ð7Þ

¼ ki � kf

¼

0

ki

0

0B@
1CA� �kf sin ’

kf cos ’

0

0B@
1CA

¼

kf sin ’

ki � kf cos ’

0

0B@
1CA: ð8Þ

If we define q to be the length of the vector Q, which can be

calculated in any orthogonal coordinate system, we can use

the above expressions to write

q2 ¼ k2
i þ k2

f � 2kikf cos ’: ð9Þ

Using equation (8) and Fig. 2, we can define the angle � as

tan � ¼ ðki � kf cos ’Þ=kf sin ’: ð10Þ

Equations (9) and (10) represent the principal difference in

the extension of the calculation to handle the fully inelastic

case. The simple expressions for q and � given by Busing &

Levy (1967) need to be replaced by the equations above. With

the above definition of �, we can calculate Q in the � coordi-

nate system, Q�, by operating on QL with H�1, as

Q� ¼ XMNUBQ ¼

 
q

0

0

!
: ð11Þ

Note that this is identical to the expression defined by Busing

& Levy (1967).

At this point, we can calculate a unit vector in the � coor-

dinate system. Note that this coordinate system plays the same

role as the ’ coordinate system of Busing & Levy (1967) in

that it represents the uppermost axis of the instrument where

the crystal remains fixed. If we set the wavevector length to

unity, we calculate

research papers

406 M.D. Lumsden et al. � UB matrix in INS J. Appl. Cryst. (2005). 38, 405–411

Figure 2
Diagram showing full inelastic momentum transfer in the laboratory
coordinate system.

Figure 1
Diagram showing the sense of rotations of the angles of the triple-axis
spectrometer with all others set to zero. The angle � corresponds to the
upper goniometer arc, � to the lower arc, and the combination of ! and �
the sample rotation angle.



u� ¼ N�1M�1X�1u� ¼ N�1M�1X�1

1

0

0

0B@
1CA

¼

cos! cos�

� sin! cos �þ cos! sin� sin �

sin! sin �þ cos! sin� cos �

0B@
1CA: ð12Þ

With this definition, we can calculate Q� for a set of obser-

vations. The monochromator and analyzer scattering angles

provide Ei and Ef (and consequently ki and kf), which toge-

ther with ’ define q and � according to equations (9) and (10).

If we define the actual rotation angle about the instrument z

axis to be s, we can write

s ¼ � þ !: ð13Þ

This allows for the calculation of !, which together with � and

� provides all the information needed to calculate Q�. The

ability to calculate Q� immediately allows us to determine the

reciprocal-space coordinates from the spectrometer angles

using

Q ¼ ðUBÞ�1Q�: ð14Þ

In addition, the calculation of this vector allows us to use the

procedures of Busing & Levy (1967) for calculating the U

matrix using either two non-collinear reflections with known

lattice constants or three or more non-coplanar reflections

with full refinement of the lattice constants.

2.1. Angle calculations for the triple-axis spectrometer

The problem of calculating angles for a given Q = (h, k, l), ki

and kf is made more complicated by the fact that the problem

is overdefined, as in the case of the four-circle diffractometer.

This overdefinition arises from being able to use the sample

manipulation angles to rotate the sample about Q producing

many equivalent solutions. As a result, we need to impose

some constraint to be able to calculate angles. However, the

different sample goniometer used on the TAS means that the

constraints discussed for the four-circle diffractometer are not

particularly useful in the triple-axis case. As most triple-axis

experiments are performed within, or at least in close proxi-

mity to, a fixed scattering plane, there are two particularly

useful constraints that can be used:

(i) rotate Q into the scattering position so as to keep a

specified reference plane as horizontal as possible;

(ii) minimize the deviation of the arcs from their zero

position.

Mathematically, the first constraint corresponds to mini-

mizing the angle between the specified reference plane normal

vector and the instrument z axis. The second constraint

corresponds to keeping the plane defined by � ¼ � ¼ 0 as

‘level’ as possible and, consequently, represents a specific

example of case (i) above.

2.1.1. Keep a reference plane as horizontal as possible. We

will begin this calculation with the instrument-angle matrix

(Busing & Levy, 1967),

R ¼ XMN; ð15Þ

which transforms a vector from the � coordinate system to the

! coordinate system. For the vector to be in the scattering

position, we must have

RQ� ¼ Q� ¼

 
q

0

0

!
: ð16Þ

To see how angles can be extracted from a specified value of

the R matrix, we must first multiply the X, M and N matrices

together, resulting in

R ¼

R11 R12 R13

R21 R22 R23

R31 R32 R33

0B@
1CA

¼

!c�c !c�s�s � !s�c !c�s�c þ !s�s

!s�c !s�s�s þ !c�c !s�s�c � !c�s

��s �c�s �c�c

0B@
1CA; ð17Þ

where !c ¼ cos!, !s ¼ sin!, �c ¼ cos�, �s ¼ sin�,

�c ¼ cos � and �s ¼ sin �.

Given a value for R, we can extract values for �, � and !
from the following expressions:

�s ¼ sin� ¼ �R31;

�c ¼ cos� ¼ ðR2
11 þ R2

21Þ
1=2; ð18Þ

�s ¼ sin � ¼ R32=ðR
2
11 þ R2

21Þ
1=2;

�c ¼ cos � ¼ R33=ðR
2
11 þ R2

21Þ
1=2; ð19Þ

!s ¼ sin! ¼ R21=ðR
2
11 þ R2

21Þ
1=2;

!c ¼ cos! ¼ R11=ðR
2
11 þ R2

21Þ
1=2: ð20Þ

The only quadrant restriction that results from this calculation

is that the upper arc, �, is restricted to lie between �90�

because of the expression for cos�. However, the configura-

tion of the typical goniometer for a triple-axis spectrometer

restricts the motion of both arcs to be less than �25� and,

consequently, this restriction is not relevant.

If we can now calculate the value of R so as to minimize the

angle between the reference plane normal and the z axis of the

instrument, we have completed our goal. In practice, the

reference plane can be defined by specifying a plane normal,

specifying a pair of vectors within the plane or specifying a set

of arc values. All three manners of specifying the plane can be

equivalently expressed by the plane normal vector in the

� coordinate system. To see how the plane normal vector is

related to the pair of arc values that define the plane (which

we will refer to as �plane and �plane) we can write out the

expression for the plane normal in the � coordinate system by

first considering a vector along the z axis in the laboratory

coordinate system and multiplying by the appropriate rotation

matrices,
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u�? ¼ N�1M�1

 
0

0

1

!
¼

 
� sin�plane

cos�plane sin �plane

cos�plane cos �plane

!
: ð21Þ

We will now transform the Q of interest into the � coordinate

system using the known U and B matrices,

Q� ¼ UBQ: ð22Þ

Normalizing this vector gives us a unit vector along the

direction of Q�, which we define to be u1�. If we take the cross-

product of u�? and u1�, we can define a new vector u2�,

u2� ¼ u�? � u1�: ð23Þ

This vector has the essential properties that it is normal to u�?,

which places it in the reference plane, and it is also normal to

Q. Consequently, if we can rotate Q into the scattering posi-

tion about the direction defined by u2�, the angular deviation

between the instrument z axis and the reference plane normal

will be minimized.

To perform this rotation, we will define a new orthonormal

set using these three vectors asbtt1� ¼ u1�;btt2� ¼ u2�;btt3� ¼btt1� �btt2�: ð24Þ

Note that we form the vectorbtt3� as vectors u1� and u�? are not

necessarily perpendicular to one another. The matrix R must

now transform the vectorsbtt1�,btt2� andbtt3� from the � coordinate

system into the � coordinate system, such that

Rbtt1� ¼

1

0

0

0@ 1A; ð25Þ

Rbtt2� ¼

0

1

0

0@ 1A; ð26Þ

Rbtt3� ¼

0

0

1

0@ 1A: ð27Þ

Equation (25) ensures that Q is in the scattering condition,

while equation (26) ensures that a vector normal to Q yet

contained within the reference plane is also in the horizontal

scattering plane. Note that we can rewrite this expression in

matrix form by forming the matrix T�, which has vectorsbtt1�,btt2�, andbtt3� as its columns. We can rewrite the above three

equations as

RT� ¼

1 0 0

0 1 0

0 0 1

0@ 1A; ð28Þ

and therefore

R ¼ T�1
� : ð29Þ

Note that the only information that went into this calculation

was the reciprocal-lattice coordinate, which we wish to place in

the scattering position, and the reference plane arcs. The key

point in this calculation is that at the end of the transforma-

tion, Q is in the scattering position and a vector normal to Q

contained within the reference plane is also in the horizontal

scattering plane. Therefore, by definition Q was rotated into

the scattering plane so as to keep the reference plane as ‘level’

as possible, which was precisely our original goal.

With the R matrix calculated, we can use equations (18),

(19) and (20) to calculate values for !, � and �. The full set of

angles we wish to calculate would be the set that would place a

specified Q ¼ ðh; k; l Þ into the scattering position with a

specified Ei and Ef . The values for Ei and Ef can be used to

calculate ki and kf and, consequently, the monochromator and

analyzer scattering angles. The magnitude of Q together with

ki and kf can be used to calculate ’ according to (9). These

values can then be used to calculate � from (10), which,

together with the value for ! resulting from the calculation

described above, can be used to calculate the value for the

observed rotation angle s using (13). These angles together

with the arc values from the calculation above completely

define the required set of angles.

As mentioned above, the second mode of calculation is

minimizing the absolute value of the arcs. This mode is simply

a special case of the mode described above with the reference

plane arcs set to zero, i.e. �plane = �plane = 0.

This completes the extension of the UB matrix formalism to

handle inelastic scattering experiments using the typical

geometry of the triple-axis spectrometer. As a final note, this

formalism has been implemented in our new LabVIEW-based

data acquisition system, SPICE (http://neutron.ornl.gov/spice)

used for controlling the neutron scattering instruments at the

High-Flux Isotope Reactor. This program has been used

extensively by both local staff and external users and has

greatly enhanced the capabilities of the triple-axis spectro-

meters.

3. Time-of-flight spectrometers

Inelastic neutron scattering measurements are also made

using time-of-flight (TOF) spectroscopy. Such measurements

use a pulsed beam of neutrons and the measured time taken

for the neutron to travel from the sample to the detector

determines the energy transfer. These spectrometers are of

two types, corresponding to fixed Ei with varying Ef deter-

mined by time-of-flight (referred to as direct geometry) or

fixed Ef with varying Ei (referred to as indirect geometry). In

either case, an individual measurement corresponds to some ki

and kf scattered into a detector pixel. The primary difference

between this and the case of the triple-axis spectrometer is

that the detector location, and thus the direction of kf, is in a

general spatial position, i.e. it is not restricted to be in a plane.

As in the case of the triple-axis spectrometer, we consider a

neutron beam incident along the y axis. The direction of kf is

defined to be at an angle ’0 from the y axis when projected on

to the xy plane and angle  out of this plane. From this

definition of angles, shown in Fig. 3, we can write Q in the

laboratory coordinate system as
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QL ¼ ki � kf

¼

0

ki

0

0B@
1CA� �kf cos sin ’0

kf cos cos ’0

�kf sin 

0B@
1CA

¼

kf cos sin ’0

ki � kf cos cos’0

kf sin 

0B@
1CA: ð30Þ

If we split QL into components within and perpendicular to

the xy plane,

Q2
L � q2

¼ Q2
k þQ2

?; ð31Þ

we can use (30) and the angle definitions shown in Fig. 3 to

write

Qk ¼ ðk
2
i � 2kikf cos cos ’0 þ k2

f cos2  Þ1=2; ð32Þ

Q? ¼ kf sin ;

tan � ¼ ðki � kf cos cos ’0Þ=kf cos sin ’0;

tan� ¼ ðkf sin Þ=Qk:

Note that the we can easily relate the true scattering angle

(which we will refer to as ’ in direct analogy with the triple-

axis case) to the angles defined in Fig. 3. To see this relation,

we will first write

QL � q ¼ ðQ2
k þQ2

?Þ
1=2

¼ ðk2
i þ k2

f � 2kikf cos cos ’0Þ1=2: ð33Þ

In addition, the law of cosines allows us to write an expression

for QL using the true scattering angle, ’, as

QL � q ¼ ðk2
i þ k2

f � 2kikf cos ’Þ1=2; ð34Þ

which is identical to the expression we had in the triple-axis

case [equation (9)]. Equating (33) with (34) allows us to write

a simple relation between ’ and the angles defined in Fig. 3, ’0

and  ,

cos ’ ¼ cos cos ’0: ð35Þ

There is no standard goniometer used in TOF spectrometers

and so, for direct comparison purposes, we will assume the

same set of angles used in the triple-axis case. This assumption

allows us to write the same scattering equation for this case:

QL ¼ HXMNUBQ: ð36Þ

As before, we can write out the equation in the � coordinate

system by multiplying QL by H�1, which gives

Q� ¼

ðk2
i � 2kikf cos cos ’0 þ k2

f cos2 Þ1=2

0

kf sin 

0@ 1A; ð37Þ

Q� ¼

 
Qk
0

Q?

!
: ð38Þ

We can compare this expression with the expression for Q� for

the triple-axis spectrometer [equation (11)]. In the case of the

TOF spectrometer, the general spatial position of the detector

results in Q� lying in the xz plane with the in-plane component

along the x axis and the out-of-plane component along the z

axis.

We can now write the expression for Q in the � coordinate

system by multiplying by the appropriate rotation matrices,

Q� ¼ N�1M�1X�1Q�

¼

 Qk!c�c �Q?�s

�Qk!s�c þQk!c�s�s þQ?�c�s

Qk!s�s þQk!c�s�c þQ?�c�c

!
; ð39Þ

where !c ¼ cos!, !s ¼ sin!, �c ¼ cos�, �s ¼ sin�,

�c ¼ cos � and �s ¼ sin �.

If we normalize by the magnitude of Q, we can definebQQk ¼ Qk=ðQ
2
k þQ2

?Þ
1=2; ð40Þ

bQQ? ¼ Q?=ðQ
2
k þQ2

?Þ
1=2;

which allows us to write an expression for a unit vector in the �
coordinate system as

u� ¼

bQQk!c�c �
bQQ?�s

�bQQk!s�c þ
bQQk!c�s�s þ

bQQ?�c�sbQQk!s�s þ
bQQk!c�s�c þ

bQQ?�c�c

0B@
1CA: ð41Þ

As a consistency check, we can consider the planar case.

Restricting the detectors to lie in the xy plane results in

 ! 0, bQQ? ! 0 and bQQk ! 1. This limit results in the same

expression as we had for the TAS case [equation (12)].

A single measurement consists of a scattering event with a

specified ki and kf together with the angular coordinates

specifying the direction of kf and the sample orientation

angles. The values of ki, kf , ’
0 and  allow us to calculate Qk,

Q? and � according to equation (32). The calculation of �
together with the observed rotation angle allows us to calcu-

late ! [equation (13)], which together with � and � provides

all the information needed to calculate Q� using (39). There-
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Figure 3
Coordinate system for TOF spectrometers. The direction of kf is at an
angle ’0 from the y axis when projected onto the xy plane and  away
from this plane (kf is shown rotated below the xy plane in the above
figure). This results in Q at an angle � out of the xy plane with an xy plane
projection rotated by � from the x axis.



fore, we can directly convert an observed scattering event into

reciprocal-space coordinates using (14). In addition, we can

use the procedures outlined by Busing & Levy (1967) to

calculate the U matrix.

3.1. Angle calculations for TOF spectrometers

The general case of calculating a set of angles for the case of

the TOF spectrometer is difficult because we have an added

degree of freedom over the case of the triple-axis as the

detectors are not planar. Therefore, we will consider two

calculations that should be very useful given the way that TOF

spectrometers are currently used:

(i) calculating the arc angles required to place a specified

plane horizontal;

(ii) calculating angles for the case where the only sample

manipulation is achieved through a rotation stage (i.e. � =

� = 0).

3.1.1. Angles required to place a plane horizontal.
Frequently, inelastic neutron scattering experiments are

performed with the sample aligned with a specific plane

horizontal. Even with the large detector coverage of many

TOF spectrometers, there are advantages to having a sample

accurately aligned in a highly symmetric geometry. Conse-

quently, the presence of a set of orientation arcs, such as those

typically employed on a triple-axis spectrometer, would quite

often be used to adjust the sample alignment to align a plane

accurately. As a result, we will show the calculations necessary

to place a plane horizontal.

We will begin with some specified scattering plane. This can

be specified using either a pair of vectors within the plane or

the plane normal. Clearly, the former can easily be converted

into the latter and we will assume that the plane is defined by a

plane normal unit vector. This vector, represented in the

� coordinate system, u�?, will be defined as

u�? ¼

u1�?

u2�?

u3�?

0@ 1A: ð42Þ

The goal of our calculation is to have u�? vertical in the

laboratory coordinate system, which means we want

QL=jQLj ¼

0

0

1

0@ 1A ¼ HXMNu�: ð43Þ

From this, we can write the expression for u� that will place a

vector vertical in the laboratory coordinate system:

u� ¼ N�1M�1
0

0

1

0@ 1A ¼ � sin�
cos� sin �
cos� cos �

0@ 1A: ð44Þ

If we equate equations (44) and (42), we can write the

following expressions for � and �:

u1�? ¼ � sin�;

u2�?=u3�? ¼ tan �: ð45Þ

As both � and � are restricted to lie between �90�, the above

expressions uniquely describe the set of arcs required to place

the specified plane horizontal.

3.1.2. Case of no goniometer arcs. The majority of TOF

spectrometers in use today have only the ability to manipulate

the sample orientation through a single rotation stage with a

vertical axis of rotation. This corresponds to the case where

� = � = 0. In such a restricted geometry, the ability to rotate

about the scattering vector is eliminated and the problem of

calculating angles is no longer overdefined. To see how angles

are calculated in this case, we start with the expression for Q in

the � coordinate system [equation (39)]. Setting the values of

� and � to zero in this expression gives

Q� ¼

Qk cos!
�Qk sin!

Q?

0@ 1A: ð46Þ

Therefore, if we want to drive a specific Q ¼ ðh; k; l Þ into the

scattering position for a specified ki and kf , we must first

transform Q into the � coordinate system,

Q� ¼ UBQ �

Q1�

Q2�

Q3�

0@ 1A: ð47Þ

Equating equations (46) and (47), immediately allows us to

write

Q? ¼ Q3� ¼ kf sin ; ð48Þ

which defines the out-of-plane location of kf as defined by the

angle  . As the � coordinate system is a valid orthonormal

coordinate system, we can determine jQj from

jQj2 ¼ q2
¼ Q2

1� þQ2
2� þQ2

3�; ð49Þ

which together with equations (31) and (48) gives Qk. We can

use Qk to define ! uniquely from

cos! ¼ Q1�=Qk;

sin! ¼ �Q2�=Qk: ð50Þ

We can now use ki, kf ,  and the expression for Qk to write

cos ’0 ¼
k2

i þ k2
f cos2  �Q2

k

2kikf cos 
: ð51Þ

Under the assumption that  is always between �90�

(cos > 0) we can solve for ’0 as above. Note that we have a

choice of sign for ’0 in the above expression. The choice of the

sign for ’0 will determine the value for � according to (32). The

actual orientation angle, s, is now determined from (13) and

thus the full set of required angles can be obtained.

4. Summary

In summary, we have extended the UB matrix approach of

Busing & Levy (1967) to handle the case of inelastic neutron

scattering. We have considered the standard inelastic neutron

scattering instruments for both continuous and pulsed neutron

sources, namely the triple-axis spectrometer and the TOF

spectrometer. For the conventional sample goniometer, we
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have developed expressions that allow for the calculation of

the UB matrix and the conversion from angles to h, k, l, E

space. In addition, we have developed schemes for the

calculation of angles for a given h, k, l, ki and kf . We have been

using this procedure for some time now on the triple-axis

spectrometers at the High-Flux Isotope Reactor and this

approach has greatly improved the capability of this rather

mature instrument. Although not currently being used on

TOF spectrometers, such an approach should drastically

improve the single-crystal handling capabilities of such

instruments and should have a huge impact on the quality of

science performed on such an instrument.
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